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Neurotensin is known to have antipsychotic-like behavioral and neurochemical effects, but its participation in
fear memory has not been fully elucidated. Here, we report that a lack of type 1 neurotensin receptor (Ntsr1)
increases the behavioral fear response elicited by weak fear memory. Adult Ntsr1-knockout (KO) mice and
theirwild-type (WT) littermateswere compared in contextual fear conditioning. Themicewere exposed twice
for 3 min to the context 24 and 48 h after conditioning (first and second exposure, respectively), and freezing
response of mice at the exposure was measured to evaluate fear memory. Ntsr1-KO mice showed a higher
freezing rate than WT mice at both first and second exposures under the condition where a relatively weak
unconditioned stimulus (footshock) was applied and thus elicited a relatively lower freezing rate. The
difference in thefirst exposure betweenNtsr1-KO andWTmice disappeared under the conditionwhere amore
intense unconditioned stimulus was used. The enhancement of freezing response in Ntsr1-KO mice at second
exposure was abolished by propranolol, a β-adrenergic blocker that suppresses fear memory reconsolidation,
and suppressed by MK-801, an NMDA receptor antagonist. These results suggest that Ntsr1 plays inhibitory
roles in weak fear memory.
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1. Introduction

Fear memory is critical for behavioral adaptation to the environ-
ment surrounding an individual. Identification of the neurotransmitter
system that plays a modulatory role in fear memory formation,
expression, and/or its changes by retrieval is fundamental to
understanding the adjustment of these memory processes. Among
the processes that occur following memory retrieval, reconsolidation
and extinction are well known to modulate fear memory. That is,
reconsolidation acts to stabilize (Sara, 2000; Nader et al., 2000),
whereas extinction to reduce (Myers and Davis, 2002), the expression
of the original fear memory depending on the duration of reexposure
to a conditioned stimulus (CS) (Suzuki et al., 2004).

With respect to fear memory, various neurotransmitter systems are
known to be involved in these processes (Davis, 2000, as review).
Glutamatergic and catecholaminergic neurotransmissions are one of
such systems. For instance, an antagonist for the NMDA receptor, 5-
phosphonopentanoic acid (AP5), injected into the amygdala blocks
acquisition or expression of fearmemory (Fanselow and Kim, 1994; Lee
and Kim, 1998; Maren et al., 1996). Intraperitoneal and intra-amygdala
injections of the NMDA receptor co-agonist D-cycloserine facilitate not
only reconsolidation (Lee et al., 2006)but alsoextinctionof fearmemory
(Ledgerwood et al., 2003;Walker et al., 2002). Blockade of β-adrenergic
receptor by propranolol (PROP) is known to inhibit fear memory
consolidation and reconsolidation (Przybyslawski et al., 1999; Debiec
and LeDoux, 2004),whereas the sameblockade suppresses extinctionof
the fearmemory (Ouyangand Thomas, 2005;Mueller et al., 2008). Local
infusion of an antagonist of the dopamine D1 receptor, SCH23390, into
the amygdala blocks the acquisition and expression of the freezing
response, whereas the same treatment by a D1 receptor agonist,
SKF82958, facilitates the acquisition and expression (Guarraci et al.,
1999). Intra-amygdala infusion of an antagonist of dopamine D2

receptor, eticlopride, attenuates the formation and/or consolidation of
fear memory in tone-fear conditioning (Guarraci et al., 2000). The
neurotransmissions that use lipids and neuropeptides as transmitters
are also known to be involved in fear memory. For instance, the CB1
cannabinoid receptor agonist anandamide,whenadministered by intra-
hippocampal injection, blocks reconsolidation and facilitates extinction
of contextual fear memory (De Oliveira Alvares et al., 2008). A lack of
gastrin-releasing peptide receptor (GRPR) is known to result in more
persistent fear memory in fear conditioning (Shumyatsky et al., 2002).
Intra-hippocampal injection of GRPR antagonist, RC-3095, inhibits
extinction and reconsolidation of memory in inhibitory avoidance task
(Luft et al., 2006, 2008). Intra-amygdala injection of neuropeptide Y
decreases the expression of fearmemory in fear conditioning through a
mechanism other than Y1 receptor (Fendt et al., 2009).
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Neurotensin (NT) is a 13-amino-acid peptide that widely exists in
manybrain regions (Emson et al., 1982). Three subtypes of NT receptors
(Ntsr1, Ntsr2, and Ntsr3) are known thus far. Both Ntsr1 and Ntsr2 are
G-protein-coupled receptors (Chalon et al., 1996; Tanaka et al., 1990),
whereas Ntsr3 is a single transmembrane domain protein that mainly
localizes intracellularly (Mazella et al., 1998; Sarret et al., 2003). A
population of neurons in the ventral tegmental area (VTA) contains NT,
and a subpopulation of these neurons projects to the amygdala (Asan,
1998), a brain region that plays a central role in association learning in
fear conditioning (Davis, 1997; Fendt and Fanselow, 1999; LeDoux,
2000;Maren, 1999). In the amygdala, the basolateral nucleus (BLA) and
the central nucleus (CeA) haveNT binding sites (Moyse et al., 1987) and
Ntsr1-positive cells (Alexander and Leeman, 1998). In addition, Ntsr1
interacts with the dopamine system (Binder et al., 2001, as review), and
the dopamine system is known to participate in fear memory as
mentioned above. In this relation, we previously reported that the lack
of Ntsr1 increases the activity of NMDA receptors in the amygdala by
enhancing dopamine D2 receptor activity (Amano et al., 2008). These
data imply the possibility that Ntsr1 may participate in fear memory.
However, there is only one recently published study reporting the
participation of Ntsr1 in fear memory. Namely, the Ntsr1 agonist
PD149163, systemically administered in rats, blocks fear-potentiated
startle (Shilling and Feifel, 2008).

The purpose of the present study is to further elucidate the role of
Ntsr1 in fear memory. For this purpose, we have compared
performance of Ntsr1-knockout (KO) mice and their wild-type (WT)
littermates in fear conditioning. As a result, we found that a lack of
Ntsr1 enhanced expression of conditioned fear memory depending on
the memory strength without any alterations in either locomotor
activity or sensitivity to electrical footshock. This result from knockout
mice, as well as a previous report using an Ntsr1 agonist (Shilling and
Feifel, 2008), suggests that Ntsr1 inhibits fear memory.

2. Materials and methods

2.1. Animals

Ntsr1-KO mice were generated as previously described (Maeno
et al., 2004) and backcrossed to C57BL/6 J mice 33–36 times. WT and
Ntsr1-KO mice used in the present study were generated by mating
heterozygous mice. The mice were housed four or five per cage under
controlled conditions of temperature (25±1 °C) and lighting (12-h
light/dark cycle) and provided with food and water ad libitum. At the
beginning of each experiment, mice were 15–19 weeks old. Animal
procedureswere in strict accordancewith the guidelines of theNational
Institute of Neuroscience, National Center of Neurology and Psychiatry
(Japan) and were approved by the Institutional Animal Investigation
Committee (approved # 2007013).

2.2. Drugs

PROP [(±)-Propranolol hydrochloride (Sigma, St. Louis, MO, USA)]
and MK-801 hydrogen maleate (Sigma) were both dissolved in saline
(1 g/l and 10 mg/l, respectively). According to previous reports, these
drug solutions were administered into mice at a dose of 10 mg/kg
(PROP) and 0.1 mg/kg (MK-801) body weight (volume 10 ml/kg),
respectively (Debiec and LeDoux, 2004; Lee et al., 2006; Wozniak
et al., 1996).

2.3. Behavioral procedures

2.3.1. Contextual fear conditioning test
The contextual fear conditioning test was performed as previously

described (Yamada et al., 2009). Briefly, mice were placed in the
conditioning chamber (20×20-cm bottom, 35-cm high, illuminated at
200 lx; Muromachi Kikai, Tokyo, Japan) and permitted to explore the
chamber. After 148 s, a single electrical footshock (0.8 mA, 2-s duration)
was delivered. Under more intense conditioning condition, mice
received a series of three or eight footshocks at 30-s intervals. After
the end of conditioning, mice continued to be kept in the conditioning
chamber for an additional 30 s and returned to their home cages.
Twenty-four h later, mice were exposed to the chamber without
footshock(s) to assess the contextual fear memory for 3 min (first
exposure) as measured by freezing behaviors. On the next day, mice
were exposed to the chamber for testing the memory again (second
exposure). In the secondand third experiments (shown in Figs. 2 and3),
the contextual fear conditioning (with a single footshock) was
conducted as described above except for drug administrations. That is,
WT and Ntsr1-KO mice were randomly divided into two groups,
respectively [WT-sal,WT-drug, KO-sal, andKO-drug]. Immediately after
the first exposure, the mice in the WT-sal and KO-sal groups were
intraperitoneally administered saline, and themice in theWT-drug and
KO-drug groups were similarly administered PROP (10 mg/kg) or
MK801 (0.1 mg/kg) in the respective experiment. For the extinction
experiment that is shown in Fig. 4, mice were conditioned with a series
of eight footshocks (0.8 mA, 1-s duration) at anaverage of 30-s intervals.
The first footshock was delivered 59 s after placement in the chamber.
After the end of the final footshock, mice continued to be kept in the
conditioning chamber for an additional 30 s and returned to their home
cages. On the next day, micewere exposed to the chamber for 6 min for
extinction training (Ext training). Forty-eight h after the extinction
training,micewere tested in the chamber for extinction for 6 min (Test).

Behavior was video-recorded during each session and subse-
quently analyzed for freezing, defined as complete immobilization of
the mouse except for respiration (Blanchard and Blanchard, 1972).
The freezing response was scored as the time the mouse spent frozen
during a total of 180-s or 360-s sessions or a 60-s bin, and the amount
of freezing response was expressed as the percent freezing rate in the
180-s, 360-s, or 60-s time window.

2.3.2. Open-field test
The open-field test was performed using a computerized open-field

apparatus (O'Hara & Co., Ltd., Tokyo, Japan). Naivemicewere permitted
to range freely for 5 min in a novel chamber (50×50-cmbottom, 40-cm
highwhite polyvinyl chloridefloor andwalls, illuminated at 100 lx) that
is placed inside a sound-attenuating box (Zushida et al., 2007). The total
locomotion was video-recorded and automatically analyzed on a
Macintosh computer using Image OF 2.15x (O'Hara & Co., Ltd.), a
modified program based on the public domain software NIH Image
program developed at the National Institutes of Health.

2.3.3. Shock sensitivity test
The shock sensitivity test was performed as previously described

(Yamada et al., 2003). Briefly, six series of six footshocks (20, 40, 60, 80,
100 and 130 μA, 1-s duration) were delivered to mice in ascending
and descending order of intensity via a floor grid. The inter footshock
interval was 15 s. The shock threshold was defined as the least amount
of electricity (μA) that causes an animal's hind paw left the floor. For
eachmouse, ameanshock threshold valuewas calculated as the average
of the six thresholds recorded in the series.

2.4. Statistical analysis

All data are shown as means±SEM. The two-tailed unpaired t-test
was used for statistical comparisons between two groups. For more
than three groups, the data were analyzed by two-way or three-way
analysis of variance (ANOVA). In the three-way ANOVA, genotype
(WT andNtsr1-KO), session (first and second exposures), and number
of footshock [one (1×), three (3×), and eight (8×)] were used as
factors. The factors in the two-way ANOVA were genotype (WT and
Ntsr1-KO) and drug [saline and drug (PROP orMK-801)] in the case of
second and third experiments shown in Figs. 2 and 3, and genotype



Fig. 1.Neurotensin type 1 receptor knockout (Ntsr1-KO) mice showed a facilitated freezing response, depending on the memory strength. (A) Experimental design. (B) Freezing rate
of wild-type (WT, n=10 for single (1×), three (3×), and eight (8×) footshock condition, respectively) and Ntsr1-KO (n=12 for 1×; n=10 for 3×; and n=11 for 8×)mice during the
first and second exposures. Data are expressed as mean±SEM. Significant difference, **Pb0.01, ***Pb0.001. n.s., not significant.

Fig. 2. The effect of intraperitoneal administration of β-adrenergic blocker propranolol
(PROP) on freezing response in wild-type (WT) and neurotensin type 1 receptor knockout
(Ntsr1-KO)mice. (A) Experimental design. (B) Freezing rates ofWT [saline-treated (WT-sal),
n=8 and PROP-treated (WT-PROP) n=9] and Ntsr1-KO [saline-treated (KO-sal), n=10
and PROP-treated (KO- PROP), n=11] mice during the first and second exposures. Note
that the facilitated freezing response in Ntsr1-KO mice in the second exposure was
abolished by intraperitoneal administration of PROP. Data are expressed as mean±SEM.
Significant difference, ***Pb0.001.
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(WT and Ntsr1-KO) and session (extinction training and test) in the
case of fourth experiment shown in Fig. 4. If the ANOVAs revealed a
significant main effect or interaction among the factors, a post hoc
Bonferroni's test was performed. Pb0.05 was considered statistically
significant.

3. Results

3.1. Ntsr1-KO mice showed a facilitated freezing response in fear
conditioning, depending on the memory strength

Fig. 1 shows the freezing rates of mice during 3 min of exposure
where theywere conditionedwith a single, three, or eight footshock(s). A
three-way ANOVA (genotype× session×number of footshock) revealed
significant main effects for genotype (F(1, 127)=35.26, Pb0.001),
session (F(1, 127)=21.98, Pb0.001), and number of footshock (F(2,
127)=160.49, Pb0.001), and a significant genotype × number of
footshock interaction (F(2, 127)=5.19, Pb0.01). Post hoc analysis
revealed simple main effects for all factors, and the freezing rates of
both WT and Ntsr1-KOmice increased as the number of footshocks was
increased. Moreover, under the single footshock condition, the freezing
rate of Ntsr1-KO mice (n=10) was significantly higher than that of WT
mice (n=12) for both the first (Pb0.01) and second (Pb0.001)
exposures (Fig. 1B). In contrast, under three and eight footshock
conditions, post hoc test revealed no significant difference in freezing
rates betweenWT (n=10 for each) and Ntsr1-KO (n=10 for 3×, n=11
for 8×) mice for both the first and second exposures (PsN0.05; Fig. 1B).

In addition, the mean values of freezing rates in the group that
received a single (30.67±2.05%, WT and 44.91±3.78%, KO) and three
(42.67±3.10%, WT and 48.28±3.00%, KO) footshock(s) were lower
than the freezing rate in the group that received eight footshocks
(68.39±2.51%, WT and 70.81±2.61%, KO), respectively, suggesting
that fear memory was enhanced as the number of footshocks was
increased in our experimental conditions. Therefore, it is unlikely that
the absence of augmentation of Ntsr1-KO mouse's freezing rate in the
three footshockcondition is due to saturationof freezing response inWT
mice. These results suggested that the deficit of Ntsr1 in mice enhanced
expression of fear memory only in the single footshock condition.

3.2. β-Adrenergic blocker PROP abolished the facilitated freezing
response in Ntsr1-KO mice

As mentioned in the introduction, fear memory is stabilized by
reconsolidation process after its retrieval. To test the possibility that
facilitation of memory reconsolidation participates in facilitation of
the freezing response of Ntsr1-KO mice at second exposure, we
performed a single footshock experiment using PROP, a β-adrenergic
blocker known to inhibit fear memory reconsolidation (Debiec and
LeDoux, 2004).

Fig. 2 shows the freezing rates of mice in the first and second
exposures. As we show in Fig. 1B (single footshock condition), the
freezing rate of Ntsr1-KO mice (n=21) in the first exposure was
significantly higher than that of WT mice (n=17) (t(36)=6.64,
Pb0.001). Just after the first exposure, mice were either administered
PROP or saline control, and were tested in the second exposure after
24 h. A two-way ANOVA (genotype × drug) revealed significant main
effects for genotype (F(1, 34)=26.60, Pb0.001), drug (F(1, 34)=26.00,
Pb0.001), and a significantgenotype×drug (F(1, 34)=15.83,Pb0.001)
interaction, suggesting the difference in effectiveness of PROP on the
freezing rate betweenWTandNtsr1-KOmice. Post hoc analysis showed
a significant difference (Pb0.001 for all) in the freezing rates in the
saline-treated KO mouse group (KO-sal, n=10) versus the PROP-
treated KO mouse group (KO-PROP, n=11), versus the saline-treated
WT mouse groups (WT-sal, n=8), and versus the PROP-treated WT
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mouse group (WT-PROP, n=9). These results suggest that the
augmented fear response in Ntsr1-KO mice at the second exposure
could be attributable to facilitation of fear memory reconsolidation.

3.3. NMDA receptor-mediated signaling is involved in the facilitated
freezing response in Ntsr1-KO mice

As mentioned in the introduction, neurotransmission mediated by
NMDA receptors modulates the reconsolidation of fear memory (Lee
et al., 2006), and NMDA receptor activity in the amygdala is facilitated
in Ntsr1-KO mice (Amano et al., 2008). Taking these reports into
consideration, we performed a single footshock experiment using the
NMDA receptor antagonist MK-801 to explore the involvement of
NMDA receptors in facilitated reconsolidation in Ntsr1-KO mice.

Fig. 3 shows the freezing rates of mice in the first and second
exposures. As we show in Figs. 1B and 2B, the freezing rate of Ntsr1-KO
mice (n=38) in the first exposure was significantly higher than that of
WTmice (n=33) (t(64)=4.20, Pb0.001). Just afterfirst exposure,mice
were either administered MK-801 or saline control, and were tested in
the second exposure after 24 h. A two-way ANOVA (genotype × drug)
revealed significant main effects for genotype (F(1, 70)=21.89,
Pb0.001) and drug (F(1, 70)=8.77, Pb0.01), but no significant
genotype × drug (F(1, 70)=2.13, PN0.05) interaction, suggesting the
higher freezing rate in Ntsr1-KO mice than that in WT-mice, and the
higher freezing rate in saline-treated mice than that in MK-801-treated
mice. Post hoc analysis showed a significant difference in the freezing
rates in the saline-treated KO mouse group (KO-sal, n=20) versus the
MK-801-treatedKOmouse group (KO-MK, n=21) (Pb0.01), versus the
saline-treated WT mouse groups (WT-sal, n=15) (Pb0.001), and
versus the MK-801-treated WT mouse group (WT-MK, n=18)
(Pb0.001). These results suggest that NMDA receptor activity partici-
pates in facilitation of fear memory reconsolidation in Ntsr1-KO mice.

3.4. Ntsr1-KO mice showed a normal extinction of conditioned fear

Given the participation of NMDA receptor activity in facilitation of
reconsolidation in Ntsr1-KOmice, and because extinction is known to
be modulated by pharmacological manipulation at NMDA receptor,
we tested whether fear extinction is altered in Ntsr1-KOmice. For this
purpose, we conducted a fear extinction experiment using a longer
Fig. 3. Theeffect of intraperitoneal administrationofNMDAreceptor antagonistMK-801on
freezing response inwild-type (WT) andneurotensin type 1 receptor knockout (Ntsr1-KO)
mice. (A) Experimental design. (B) Freezing rates of WT [saline-treated (WT-sal), n=15
and MK-801-treated (WT-MK) n=18] and Ntsr1-KO [saline-treated (KO-sal), n=20 and
MK-801-treated (KO-MK), n=21] mice during the first and second exposures. Note that
the facilitated freezing response in Ntsr1-KOmice in the second exposure was suppressed
by intraperitoneal administration of MK-801. Data are expressed as mean±SEM.
Significant difference, **Pb0.01 and ***Pb0.001.
exposure protocol and more intense footshock condition (Yamada
et al., 2009).

Fig. 4 shows the freezing rates ofmice during the extinction training
and test. A two-way ANOVA (genotype × session) revealed a significant
main effect of session (F(1, 26)=112.9, Pb0.001), but no significant
main effect of genotype and genotype × session interaction (Fsb1),
suggesting thatWT and Ntsr1-KOmice showed similar reduction in the
freezing rates (i.e. extinction) and there is no difference in freezing rate
between WT and Ntsr1-KO mice (Fig. 4B). Within-session analysis of
freezing response (bin=60 s) showed a substantially indistinguishable
time course in Ntsr1-KO and WT mice (Fig. 4C).

3.5. Locomotor activity is identical in WT and Ntsr1-KO mice

It is possible that a deficit of Ntsr1 reduces locomotion in mice,
which contributes to a higher freezing score during the tests conducted
in the first to third experiment (shown in Figs. 1–3) because of activity-
state-dependent effects. However, WT and Ntsr1-KO mice (n=21 for
each) showed similar locomotor activity in the open-field test, at least
for the 5 min after introducing themouse to the apparatus (t(40)=0.78,
PN0.05; Fig. 5A). Within-session analysis (bin=60 s) also showed a
substantially indistinguishable time course in the locomotor activity of
the WT and Ntsr1-KO mice (Fig. 5B).

3.6. Sensitivity to footshock is not altered in Ntsr1-KO mice

Because augmentation of fear memory expression was not
observed in the three- and eight-footshock condition, there is a
possibility that pain threshold is reduced in Ntsr1-KO mice, which
results in augmentation of the expression of fear memory in the single
footshock condition. To confirm this possibility, we performed the
Fig. 4. Neurotensin type 1 receptor knockout (Ntsr1-KO) mice showed a normal
extinction of contextually conditioned fear. (A) Experimental design. (B) Freezing rates
of wild-type (WT, n=7) and Ntsr1-KO (n=8) mice during the Ext training and Test.
(C) Time course of the freezing rates (bin= 60 s) of mice in each 60-s bin during the Ext
training and Test. Data are expressed as mean±SEM. n.s., not significant.
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Fig. 5. Analysis of locomotor activity of wild-type (WT) and neurotensin type 1 receptor
knockout (Ntsr1-KO) mice in the open-field test. (A) Total locomotor activity ofWT and
Ntsr1-KO mice (n=21 for each) during a 5-min session. (B) Time course of locomotor
activity of mice in each 60-s bin during the total 5-min session. Data are expressed as
mean±SEM. n.s., not significant.
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shock sensitivity test. Fig. 6 shows the shock threshold of the mice
(43.50±0.98 μA forWT and 44.55±1.39 μA for Ntsr1-KO; Fig. 6). There
is no significant difference betweenWT andNtsr1-KOmice (t(19)=0.61,
PN0.05).

4. Discussion

Amain finding in the present study is that a deficit of Ntsr1 in mice
facilitated fear memory in contextual fear conditioning dependently
on memory strength. Namely, for weaker fear memory formed by a
single footshock condition, both fear responses in the first and second
exposures to the context were augmented in Ntsr1-KO mice, but in
more intensive memory formed by three and eight footshock
conditions, there was no significant difference in fear responses
both in the first and second exposures. Moreover, we confirmed that
facilitation of freezing rate in Ntsr1-KOmice was not due to decreased
locomotor activity and hypersensitivity to the footshock.

This finding and a previous finding that the Ntsr1 agonist PD149163
blocks fear-potentiated startle in rats (Shilling and Feifel, 2008)
Fig. 6. Analysis of shock sensitivity of wild-type (WT, n=11) and neurotensin type 1
receptor knockout (Ntsr1-KO, n=10) mice in the shock sensitivity test. Shock threshold
(μA) of mice was presented as means±SEM. n.s., not significant.
consistently suggest a putative inhibitory role of Ntsr1 in fear memory.
In contrast to these results, however, there are several reports that
indicate the memory-enhancing effect of Ntsr1 in recognition memory
tasks, such as social discrimination and object recognition (Feifel et al.,
2009; Azmi et al., 2006). With respect to fear memory, inputs from the
cortical area, including the visual and auditory cortices, thalamus, and
hippocampus to the basolateral nucleus of the amygdala are necessary
to form thememory (Davis, 2000). In contrast, inputs from the olfactory
system, such as themain and accessory olfactory bulb to themedial and
cortical nuclei of the amygdala are suggested in processing of olfactory
information that is required for social discrimination in rodents (Cooke
et al., 1998; Richter et al., 2005). The hippocampus, perirhinal and
entorhinal cortices participate in object recognition (for review, see
Winters et al., 2008). In thesebrain regions, expression ofNtsr1mRNA is
observed (Alexander and Leeman, 1998). Therefore, the discrepancy in
the role of Ntsr1 between fear memory and social discrimination and
object recognition memory may be due to the difference in neural
circuits that participate in respective memory.

Because the freezing rate of Ntsr1-KOmice was higher than that of
WT mice even in the first exposure, there is a possibility that the
augmented fear response in Ntsr1-KO mice in the second exposure
was due to facilitation of acquisition and/or consolidation processes.
Although we did not directly examine this possibility in the present
study, our pharmacological analysis using PROP suggested that
augmentation of fear response at least in the second exposure to the
context, in the case of weak memory, was attributed to facilitation of
fear memory reconsolidation because PROP inhibits fear memory
reconsolidation (Debiec and LeDoux, 2004). Previous studies have
suggested that activation of β-adrenergic and NMDA receptors plays
crucial roles in fear memory reconsolidation and that intracellular
signalingmechanisms activated by these receptors crosstalkwith each
other (for review, Tronson andTaylor, 2007; Sara, 2009). In the present
study, antagonists of these receptors, PROP and MK-801, suppressed
augmentation of freezing response at second exposure in the single-
shock protocol, when administered in Ntsr1-KO mice just after first
exposure. Therefore, there is a possibility that the activity of β-
adrenergic and/or NMDA receptors is elevated in Ntsr1-KO mice. In
this relation, we have previously reported that NMDA receptor activity
in BLA pyramidal neurons is elevated in Ntsr1-KO mice, compared
with WT mice, via disinhibition of the dopamine D2 receptor by a
deficit of Ntsr1 (Amano et al., 2008). This elevation of NMDA receptor
activity causes enhanced long-term potentiation of synaptic response
in these neurons (Amano et al., 2008). Because the BLA is known to
play a central role in fearmemory reconsolidation (Duvarci andNader,
2004; Nader et al., 2000), electrophysiological abnormalities in the
BLA of Ntsr1-KO mice may participate in the enhanced fear memory
reconsolidation in Ntsr1-KO mice.

Participation of the circuit consisting of the amygdala, hippocampus,
and medial prefrontal cortex (mPFC) is established in the extinction
learning of fear memory (Myers and Davis, 2007; Quirk and Mueller,
2008). Because Ntsr1 is expressed in all of these brain regions
(Alexander and Leeman, 1998), the lack of changes in extinction in
Ntsr1-KO mice in the present study was somewhat unexpected. In
particular, exogenously applied NT stimulates tetrodotoxin-sensitive
release of GABA in themPFC via Ntsr1 (Petrie et al., 2005). In this study,
the release of GABA is monitored by in vivo microdialysis, and the
exchanging area by dialysis is prelimbic and infralimbic regions of the
mPFC. In the mPFC, the infralimbic region is important for the
consolidation and retrieval of extinction, and, in contrast, the prelimbic
region rather plays a role in fear memory expression in rats (Corcoran
and Quirk, 2007; Milad and Quirk, 2002; Quirk et al., 2000; Vidal-
Gonzalez et al., 2006). Therefore, for the interpretation of the absence of
changes in extinction in Ntsr1-KO mice, whether endogenous NT is
released and stimulates GABAergic interneurons in the infralimbic
region of mPFC during extinction learning would be informative. Yet,
the existence of a mechanism where Ntsr1 activates GABAergic
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interneurons is informative for the interpretation of augmentation of
fear expression in Ntsr1-KOmice because activation of GABAA receptor
in theBLAdecreases expressionof contextual fearmemory (Helmstetter
and Bellgowan, 1994). A similar mechanism via Ntsr1 is also known in
the globus pallidus (Ferraro et al., 1997) and is possible also in the BLA
because NT/DA afferent fibers project to BLA non-pyramidal neurons
(Asan, 1998). However, further investigations are needed to identify the
brain region that participates in augmentation of fear expression in
Ntsr1-KO mice.

We previously reported that Ntsr2-KO mice showed reduced
freezing response in a test conducted 24 h after fear conditioning
(Yamauchi et al., 2007). Therefore, there is a possibility that Ntsr1 and
Ntsr2 functionally diverge with respect to participation in fearmemory.
These two receptors are both diffusely expressed in the brain, including
the cerebral cortex, hippocampus, amygdala, hypothalamus, thalamus,
substantia nigra, and septal region (Alexander and Leeman, 1998;
Mazella et al., 1996; Moyse et al., 1987; Sarret et al., 1998), but a main
receptor subtype that plays a critical role in NT-dopamine interaction is
thought to be Ntsr1 (Binder et al., 2001, as review). The interactionwith
the dopamine system may be a main factor underlying functional
divergence of Ntsr1 and Ntsr2 in fear memory. As mentioned above,
pharmacological inhibition of dopamine D2 receptors in the amygdala
reduces the formation and/or consolidation of freezing responses in fear
conditioning (Guarraci et al., 2000). Therefore, facilitation of freezing
response in fear conditioning in Ntsr1-KO mice could be explained by
the impairment of Ntsr1-induced inhibition of dopamine D2 receptors.
As for themechanismunderlyingNtsr1 inhibits D2 receptors, it is known
that allosteric Ntsr1-D2-like receptor interaction decreases the agonist-
binding affinity of D2-like receptors (Diaz-Cabiale et al., 2002; von Euler
et al., 1989).

It is noteworthy that patients with post-traumatic stress disorder
(PTSD) showed higher serum prolyl endopeptidase, which is one of the
NT-degradation enzymes (Maes et al., 1999). Although it has not been
demonstrated, higher activity of the degradation enzyme for NT would
reduce NT content in the brain, which in turn would downregulate NT-
signaling via Ntsr1. Because uncontrollable augmentation of fear
memory is hypothesized to be involved in anxiety-related disorders
including PTSD (Amstadter et al., 2009, as review), reduction of
endogenous Ntsr1-mediated signaling may participate in the patho-
physiology of PTSD via augmentation of fear memory.
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